Advertisement

We need your help now

Support from readers like you keeps The Journal open.

You are visiting us because we have something you value. Independent, unbiased news that tells the truth. Advertising revenue goes some way to support our mission, but this year it has not been enough.

If you've seen value in our reporting, please contribute what you can, so we can continue to produce accurate and meaningful journalism. For everyone who needs it.

Image comparing the size of Earth to Neptune Alamy Stock Photo

New images reveal what Neptune and Uranus really look like

A new study has revealed that the two ice giants are actually much closer in colour than typically thought.

NEW IMAGES REVEAL what the most distant planets in the solar system – Neptune and Uranus – really look like.

Many people will think of Neptune as being a rich blue colour, and Uranus more green.

But a new study has revealed that the two ice giants are actually much closer in colour than typically thought.

Professor Patrick Irwin from the University of Oxford, and his team found that both planets are a similar shade of greenish blue.

Experts suggest the idea that both planets were different colours arose because images of them captured in the 20th century – including by Nasa’s Voyager 2 mission, the only spacecraft to fly past these worlds – recorded images in separate colours.

embedded9244260 New images reveal what Neptune and Uranus really look like. Patrick Irwin / University of Oxford/NASA/JPL-Caltech Patrick Irwin / University of Oxford/NASA/JPL-Caltech / University of Oxford/NASA/JPL-Caltech

The single-colour images were later recombined to create composite colour images, which were not always accurately balanced to achieve a true colour image.

Particularly in the case of Neptune, these composites were often made too blue.

Early images of Neptune from Voyager 2 were strongly contrast enhanced to better reveal the clouds, bands, and winds that shape what we have come to think the planet looks like, scientists say.

Prof Irwin said: “Although the familiar Voyager 2 images of Uranus were published in a form closer to ‘true’ colour, those of Neptune were, in fact, stretched and enhanced, and therefore made artificially too blue.

“Even though the artificially-saturated colour was known at the time amongst planetary scientists – and the images were released with captions explaining it – that distinction had become lost over time.”

He added: “Applying our model to the original data, we have been able to reconstitute the most accurate representation yet of the colour of both Neptune and Uranus.”

Dr Heidi Hammel, of the Association of Universities for Research in Astronomy (AURA), who has spent decades studying Neptune and Uranus but was not involved in the study, said:

The misperception of Neptune’s colour, as well as the unusual colour changes of Uranus, have bedevilled us for decades. This comprehensive study should finally put both issues to rest.

In the new study, the researchers used data from Hubble Space Telescope’s Space Telescope Imaging Spectrograph (STIS) and the Multi Unit Spectroscopic Explorer (MUSE) on the European Southern Observatory’s Very Large Telescope.

In both instruments, each pixel is a continuous spectrum of colours, meaning observations from them can be processed to determine the true apparent colour of Uranus and Neptune.

The researchers used the data to re-balance the composite colour images recorded by the Voyager 2 camera, and also by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3).

This revealed that Uranus and Neptune are actually a rather similar shade of greenish blue.

However, the study also found that Neptune has a slight hint of additional blue, which the model reveals to be due to a thinner haze layer on that planet.

The study also provides an answer to the long-standing mystery of why Uranus’s colour changes slightly during its 84-year orbit of the sun.

According to the findings, this is because of how thick certain gases are at the planet’s north and south poles, and how they appear when these poles are closest to the sun.

Professor Irwin said: “This is the first study to match a quantitative model to imaging data to explain why the colour of Uranus changes during its orbit.”

“In this way, we have demonstrated that Uranus is greener at the solstice due to the polar regions having reduced methane abundance but also an increased thickness of brightly scattering methane ice particles.”

The findings are published in Monthly Notices of the Royal Astronomical Society.

Close
17 Comments
This is YOUR comments community. Stay civil, stay constructive, stay on topic. Please familiarise yourself with our comments policy here before taking part.
Leave a Comment
    Submit a report
    Please help us understand how this comment violates our community guidelines.
    Thank you for the feedback
    Your feedback has been sent to our team for review.

    Leave a commentcancel

     
    JournalTv
    News in 60 seconds